Ένα νέο πρόγραμμα τεχνητής νοημοσύνης που «διαβάζει» τα χείλη των ανθρώπων εξ αποστάσεως με μεγαλύτερη ακρίβεια όχι μόνο από κάθε άλλο μέχρι σήμερα, αλλά και από τους ανθρώπους με τη σχετική εξειδίκευση, τίθεται πλέον στη διάθεση των ατόμων με προβλήματα ακοής.
Το πρόγραμμα ανέπτυξαν ερευνητές της Google και της βρετανικής θυγατρικής της Deep Mind, η οποία πρωτοπορεί διεθνώς στην τεχνητή νοημοσύνη, με επικεφαλής τον ελληνικής καταγωγής ειδικό της Πληροφορικής, Γιάννη Ασσαέλ.
Για τα εκατομμύρια των ανθρώπων που δεν μπορούν να ακούσουν, η ανάγνωση των χειλιών των άλλων αποτελεί ένα «παράθυρο» για την επικοινωνία, πέρα από τη νοηματική γλώσσα. Όμως το «διάβασμα» των χειλιών δεν είναι εύκολο και συχνά είναι ανακριβές.
Το νέο «έξυπνο» σύστημα εμφανίζει μέσο ποσοστό λαθών 41% στην ορθή κατανόηση των λέξεων που σχηματίζουν τα χείλη. Μπορεί να φαίνεται υψηλό αυτό το ποσοστό, αλλά η καλύτερη μέχρι σήμερα υπολογιστική μέθοδος είχε ποσοστό αποτυχίας 77%, συνεπώς το νέο πρόγραμμα έχει περιορίσει σχεδόν στο μισό τα λάθη.
Οι ερευνητές, με επικεφαλής τον Ασσαέλ και τον Μπρένταν Σίλινγκφορντ, οι οποίοι έκαναν τη σχετική προδημοσίευση στο arXiv, σύμφωνα με το Science, δημιούργησαν αλγόριθμους καλύτερους από κάθε άλλους στο παρελθόν, που τα καταφέρνουν αποτελεσματικότερα και από επαγγελματίες αναγνώστες χειλιών. Αν το νέο σύστημα τελειοποιηθεί και ενσωματωθεί σε ηλεκτρονικές συσκευές, όπως τα «έξυπνα» κινητά τηλέφωνα, μπορεί μελλοντικά να προσφέρει τη δυνατότητα ανάγνωσης των χειλιών στον καθένα.
Η δημιουργία αλγορίθμων που να μπορούν να διαβάσουν χείλη ήταν έως τώρα τρομερά δύσκολη. Οι ερευνητές τροφοδότησαν το σύστημά τους με 140.000 ώρες βίντεο από το You Tube που έδειχναν ανθρώπους να μιλάνε στα αγγλικά, μαζί με τα αντίστοιχα απομαγνητοφωνημένα κείμενα. Στη συνέχεια, άφησαν το σύστημα μηχανικής μάθησης μόνο του να μάθει να «παντρεύει» τις διαφορετικές κινήσεις των χειλιών με τα αντίστοιχα φωνήματα και τελικά με τις αντίστοιχες λέξεις.
Το σύστημα βασίζεται στα τεχνητά νευρωνικά δίκτυα, δηλαδή σε μια ομάδα αλγόριθμων που ο καθένας εκτελεί ένα διαφορετικό και απλούστερο έργο, ενώ ταυτόχρονα όλοι μαζί συνδέονται και συνεργάζονται για να επεξεργασθούν τις πληροφορίες, περίπου όπως κάνουν οι νευρώνες του ανθρώπινου εγκεφάλου.
Αφού το σύστημα «αυτο-εκπαιδεύθηκε», δοκιμάστηκε από τους ερευνητές στην ανάγνωση των χειλιών των ανθρώπων ενός 37λεπτου βίντεο, που ποτέ πριν το σύστημα δεν είχε «δει». Το πρόγραμμα έσφαλε στο 41% των λέξεων, αλλά οι άνθρωποι -ακόμη και οι ειδικοί στο διάβασμα του στόματος- που είδαν το ίδιο βίντεο, είχαν μέσο ποσοστό αποτυχίας 93% (πάντως σε πραγματικές συνθήκες και όχι παρακολούθησης βίντεο, το ποσοστό ανθρώπινης αποτυχίας είναι κάπως μικρότερο, καθώς ο ανθρώπινος εγκέφαλος μπορεί να αξιοποιήσει και άλλα στοιχεία, όπως η γλώσσα του σώματος αυτού που μιλάει).
Σε κάθε περίπτωση, αν και συνιστά πραγματική πρόοδο, είναι σαφές ότι ένα ποσοστό αποτυχίας της τάξης του 40% στην αναγνώριση των λέξεων σημαίνει ότι το σύστημα χρειάζεται ακόμη ουσιαστική βελτίωση. Όταν αυτή υπάρξει, το σύστημα μπορεί να αξιοποιηθεί ευρύτερα και στην καθημερινότητα. Για παράδειγμα, όταν θα βλέπουμε στην τηλεόραση έναν ποδοσφαιριστή να βρίζει ένα διαιτητή ή έναν αντίπαλο παίκτη, αλλά φυσικά δεν ακούμε τι λέει, θα ξέρουμε πια τι είπε.